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ABSTRACT:

The use of computers in autonomous telerobots is reaching the point where advanced
distributed processing concepts and techniques are needed to suppart the functioning of
Space Station era telerobotic systems. This paper covers three major issues that have
impact on the design of data management functions in a telerobot. It aiso presents a
design concept that incorporates an inteliigent systems manager (I1SM) running on a
spaceborne symbolic processar, (SSP), to address these issues.

The first issue is the support of a system-wide control architecture or control philosophy.
Salient features of two candidates are presented that impose constraints on data
management design. The second issue is the role of data managements in terms of
system integration. This refers to providing shered or coordinated data processing and
storage resources to a variety of telerobotic components such as vision, mechanical
sensing, real-time cocrdinated multiple limb and end effector control, and planning and
reasoning. The third issue is hardwere that supports symbolic processing in conjunction
with standard data 1/O and numeric processing. A spaceborne symbolic processor,
(SSP), that currently is seen to be technologically feasible and is being developed is
described and used as a baseline in the design concept.

INTRODUCTION

The objective of this paper is 10 introduce, informally and largely by examples and
comparison, an advanced design concept to data management in autonomous
telerobots. The motivation for introducing advanced data management techniques in
such systems is 1o address the system-wide complexity problem in general and the
system level issues of evolvability and modularity in perticuler.

Data Management is a broad term. Nonetheless, it is far to say that it is at the core of
most aystem integration efforts. For NASA, one poesible and logical approach to
developing telerobotic systems is to view building them as another satellite or space
craft. In this scenario, the contractor is largely responsible for system integration. As a
consequence, Data Management is tucked away In the last development activity
precedng the operations phase. Fartunately, there are several major efforts within
NASA to elevate systems architecture and integration to an anticipatory design

process! 2.

‘Hbua, James A McCain, H.G., Lumia, R, NASANBS Standard Reference Model For Telerobot Control
g%em Architecture{ NASREM), December 4, 1985, National Bureau Of Standards, Robot Systems
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CONCEPT DESIGN

In this paper, we are interested in Data Management as an integral collection of support
services that satisfy the system-wide information(data) processing needs of a telerobotic
system. Therefore, we recommend that these services be viewed as a subsystem that is
on an equal footing with all the other subsystems in a telerobotic system.

For example, a popular view of computers is that they “think” or are the “brains” in a
feature-laden appliance. In a ike manner, data management in telerobots may be
viewed as the nervous system as wefl as the brains. Given this idea, the possibility of
incorparating higher levels of inteligence in a primitive information broker such as a
Data Management Subeystem allows for an evolutionary approach to increasing
autonomy and intefligence of telerobots.

To further this objective, we recommend that data management have its own
organization conventions or architectural model. An Intelligent Systems Manager, (ISM),
waﬂdenbodymem”dmexdmmohammm. Among the many
possible goais for an ISM, as an intefligent information (data) broker, two impaortant ones
are to reduce the complexity of interaction among multiple inteligent subsystems, and to
oversee top level safety of a telerobotic system with respect to these subsystems.

Currently, there are several telerobotic system architectures and modeis that partition the
high level telerobotic functions in ditferent ways. We now discuss how the ISM concept
ﬁtshvdmmeeeandhwnaideinimaﬁngadvanceddsﬁbmwproceedngcmcepm
into a telerobotic control design.

A common starting point for architecture definition of a telerobot is the specification of a
controller(s). At one end of the scale we have a ‘point design’. For example,
requirements are immediately mapped to a specific collection of “off the sheif*
components that are hardwired together to function as a controller. Of course, what is a

‘point design' is a matter of degree and depends on one's systems engineering criteria.

A mare general purpose approach involves defining a set of generic activities that
require services of a controfier(s). This is perticularty difficult because the field of
autonomous telerobotics is 80 new. As a consequence, the subject of design criteria for
partitioning a telerobotic system into subsystems is evoiving. One pertitioning, given by
Mertin, et aP, is illustrated in the conceptual layout shown below. Martin, et al propose
the use of powerful microprocessors and outline an architectire to interconnect and
interface them to support teleoperatar control of mechanical manipulators. In this
example and in general, seperating out what is integral to a Data Menagement
Subsystem from data processing elements indigeous to other subsystems in a telerobot
8 no easy task.. For example, in Martin, et al's, design there are data management
functions in all activity arees.

2F unctional Requirements For The 1988 Telerobotic Testbed, JPL D-3693, October 1986,

%t'n, LeeH., Pau E.S. Selteriee v, snd Richerd F. Spile, Distribute d Control Archit ecture For Resl-
Time Telerobolic Operalion”, JPL Space Telerobotics Workshop, January 20-22, 1987 [in pubiiciation).
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Communications

Conceptual layout of the principal centers for telerobotic control(Martin et al)
Figre 1

What we propose in this example is that another activity area - data management - be
added to the top level list of major control activities as shown in the following figure:
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Example of Data Management As A Principal Center For Control.
Figure 2

Since, we do not know the implementation coet, the above conceptual layout is not yet
recommended as a better way to solve the specific class of telerobotic functions that
Martin, et al, are addressing. We use it to illustrate an important shift in design. Each
subsystem has its own information processing needs and, therefore, will have internal
data management facilities. The crux of the matter is figuring out what the interfaces are
between the Data Management subeystem and the other subeystems.

INTELLIGENT INTERFACE

On one hand, the layout proposed above may seem to be equivalent to the systems
integration design aiready derivable from the existing architecture as proposed by
Martin, et al. On the other hand, suppose a uniform and common interface is available




that any subsystem must use in order to coordinate end-to-end activities with other
subsystems in the telerobot. This interface is between a subsystem and the Data
Management subsystem. This is represented in the above figre by the overlap of the
Data Management subsystem over the others and the stripped band.

Let's assume such an arrangement for the moment. In order to add another subsystem,
this subsystem must be built to work with thet interface. In the case thet the new
subsystem can obtain all nonindigenous resources and end-to-end services only from
the data management subsystem, we then say that system evolvability or scalability in
linear in the architecture with respect to this interface.

The issue now facing us is whether such an interface is definable in telerobotic systems
and, if s0, what will it take for it to be effective? Another way to look at the question is to
ask what is the best way to organize the Data Management subsystem so that its impact
on subsystem dependencies is minimized? The more flexibility the Data Subsystem has
the better.

Existing interfaces occurring in different levels of computer technology reflect a form of
architectural linearity or scalability for a variety of modules. For example, at the
hardware level, standard buses such as the YME and Multibus support a number of
controllers up to a standard configuration limit. At the local area network level, Ethernet
supports the linear insertion of nodes up to a configuration-dependent maximum.

At the operating systems level, there are distributed operating systems running on
muttiprocessor configurations that allow, up to a limit, processes or jobs which have no
interdependencies to be assigned to available processors at a fixed per process/job
overhead. A commercial operating system exhibiting such a capabifity is Dynix!. Itisa
proprietary design and runs on a multiprocessar system, the Balance 8000, which
supparts a configuration of up to 24 32-bit microprocessars. In fact, performance
measurements show an efficient linear performance curve for jobs with certain types of
dependencies.

The point we want to emphasize is that was only a few years ago it seemed impractical
to even Try to organize? large scale systems such as computers to operate in paraliel on
a collection of jobs and processes that were reasonably independent and maintain a
linear performance curve across a useful wark range. Today this is becoming routine.
Likewise, with something as complex as a telerobot , we can make headway in
achieving efficient linearity for a practical set of parallel and independent tasks.
Therefore, we wee instances of finearity in performance and scalability in a variety of
computer technology levels.

OBJECTS
The success of achieving this sort of linearity and modularity of performance from the
Data Management subsystem in a telerobotic system depends initially on our ability to

1The Belance 8000 Technical Reference Menual, Sequent Computer Systems, Inc., Beaverton Oregon.

2amdaii's Lawcirca 1970: Forthe same smount of money one big computerwill provide more throughput
thet acollection of smaller ones.



represent the concept of an intelligent interface in software. The representation
approach we recommend is through the use of abetract objects.

The use of abstract objects is one of several key concepts in advanced distributed
processing !. Many programming languages support objects either drectly by syntactic
conventions or indrectly by the programmer’s use of an object-oriented methodology.
For example, work is being done in object-ariented design using Ada2. 3. Strongly
related to the object oriented design approach is the concept of layered design. The
layers of an onion are often used as an analogy for the layering of objects in the whole
design.

I is beyond the scope and purpose of this paper to do more than introduce the salient
aspects of this subject. We are interested in provoking thought along these lines in
development people working in a variety of telerobotic diecipiines. In perticuler, those R
& D engineers who must deal with the system engineering problems of data
management or are geatly affected by it s presence or absence.

The sort of telerobotic systems we are anticipating will have requirements that are at

least as computationally complex and challenging as thoee envisioned in DARPA's
research4 in autonomous vehicles. NASA's Flight Telerobotic Servicer(FTS) will easily
have the same complexity in data management and computational requirements as
these systems are envisioned 1o have if it is to support a major autonomous mode of
operation for space stations maintainence.

Object oriented design methodology and programming et the moet general or abetract
level spans at least two different datafinformation management discipiines. Whereas,
computer science is often associated with procedural languages such as Ada and with
numerical algorithms, Artificial Intelligence(Al), is associated with functional languages
such as Lisp and with symbolic processing. These differences are mentioned to
iustrate that, in fact, this concept and methodology is an integral pert of each of these
two disciplines( or styles ) and is a strong common point between the two. This
commonality in using objects is often lost because of the pigeon-holing of professionals
as being either in Al or in computer science. Therefore, we prefer to keep the discussion
of objects independent of any language (which is a form of implementation of these
concepts) or discipline.

'Lanpson, B.W., Pau, M., and Siegert, H.J., Distributed Systeme-Archecture end Implementetion, An
AdvencedCourse, 1981, Springer-Yerlag, 15-16.

2Firesmith, Donald G., Object-Oriented Development, Proceedng: First ntemational Conference on Ade
Programming Language Applicalion Forthe NASA Space Station, June 2-5, 1986, High Technologies
Laboralories, University of Houston-Clear Lake, Texas, D 4.1.1,,D.4.1.11.

3Booch, Grady, Softwere Engineering Yfth Ada., The BenjemindCummings Publishing Compeny, Inc. 1983.

“Torero, Edwerd A, Miltery R3O, The DARPA Program(’ Strategic Computing’, DARPA. October 1983),
Nexd-Generation Computers, IEEEE Press, 1985, 153-154.
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Another reason to keep the discussion at a generic level is that, except for small
subsystem controllers in telerobots or scientfic payload instrument control applications,
current implementation of programming languages supporting these constructs put
major constraints on object representation, manipulation, and performance in a
distributed environment. However, significant strides are aready being made. Martin, et
al, note that the performance capability of the Novix! microprocesser is largely due to its
drect support of the Forth language.. A relatively new language called Neon2, which
borrows heavily features from Forth® and Smalftalk* supports objects in its syntax.
Consequently, it is an exampie of a product that straddes the fence between Al and
computer science. Such innovations are likely to continue and even accelerate in the
futre. Oak Ridge Nationai Laboratory, in a report on the Man-Equivalent TeleRobat,
mentions that its experience in using Forth as a language for real-time control has been
positiveS. Therefore, it is plausible that an object design environment that meets
significant telerobotic requirements in data management could be developed in the near
future. Whether it is a ‘new’ language, such as Neon, or a sophisticated development
environment built on top of existing software technology, such as Ada or one of the
varieties of Lisp, remains an open question. The key issue in either case is the
availability of an appropriate computer architecture(s) and technology that support such
a design approach and, at the same time, wil embed successfully in telerobots.

We are encouraged to pursue this approach to data management given that there are
more and more programming implementations of these concepts available on powertful
MiCroprocessors.

Abstract objects( or resources), both active and passive, are such things as files,
drectories, processes, tasks, virtual I/O devices, databases, and any other item that is
useful for the designer to identify as part of the system at a certain level. In confrast, real
objects are such things as processors, secondary storage, confrollers and any physical
item that must be taken into account at a certain level (fayer) of detail to perform a
function. (The irony is that the use of abstract objects in designing data management
architecture is making abstract things appeer as “hardware” entities to be
software/systems engineer and real things such as scientific instruments and sensors
appear as "software” entities.) Each object is specified by its representation and a set of
operations or functions and associated parameters that can be performed on the
representation. The implementation details of an object representation are contained in
an object manager. (Note that an object manager may itself be a object in the system.)
In a distributed environment, message passing is needed to exchange information

1Seefootnote 3.

2The Neon Manual, Kriya System, inc. 505 N. Lakeshore Drive, Sute 5510 Chicago, 1. 606 11. Runs onthe
Macintosh computer.

Nanfield, A The Complete Forth, ANew Yay To Program Microc omputers, ¥leyand Sons, 1983.
4Gddberg, A, Smelkak-80: The Language and ks impiementation, Addison-YYesley, 1983

SRecommendation For The Next-Generstion Space Telerobot System, Oak Ridge National Laborat ory, TM-
9951, March 1986,



between object managers and to cary out operations on objects. The mechanism of
message passing may be implemented using shared memory and procedure calis or
may be implemented by sendreceive operations that require a protocol to insure
reliability and fault tolerance.

We now describe the conceptual elements of what we mean for an interface 10 be
intelligent, and, carespondingly, refer to an intefligent Data Management subsystem as
one that uses such an interface. We use the terminology of objects discussed up to this
point in order to establish specifically the properties of this interface.

An interface is defined as a set of conventions for the exchange of information between
two object managers. The three components of an interface are:

* A get of visible data objects or modules and the allowed operations and
parameters associated with each visible data object or module.

*A set of rules governing the logical or legal sequences of these operations.
*The encoding and formatting conventions required for operations and data.

We say a peer-to-peer intelligent interface exists between the Data Management
subsystem and the other subsystems in a telerobot when the following properties hoid:
First, it is possible for the Data Management subeystem to actually pass or export copies
of code that meet the specification of the three components of the interface specification
to a subsystem. A extreme example of control is that the Data Management subsystem
would have to pass or export all of the actual code needed in a subsystem for that
subsystem to be able to use Data Management subsystem services. As an example of
negotiated control, a subsystem could fikewise pass or export select components of the
interface back to the Data Management subsystem for purposes of adaptive
configuration of services. Second, the interface itself must be symmetric. By this we
meen that two peers use the same specification ( with differences limited to addresses
and local house-keeping functions) in arder to interact. In some computation settings,
such as data communications, such an interface would be viewed as a protocol. In this
sense, what we see being passed two subsystems in an autonomous telerobot is the
protocol itseif tailored to allow for special *hand-eye" coordination or the control of
dynamic chaining of control loops. However, we see even more complex information
being passed in such a fashion.

For example, in DARPA's autonomous vehicles program it is envisioned that these
vehicles are characterized by ther ability to accept high-level task description!0. Ina
like manner, an intelligent data management subsystem would have to be able to take a
tempiate of information given to it by a higher level task synthesizer.. Consequently, it
would pass templates of information, ( in Al perfance, knowledge base facts and rules) to
the subsystems in order to set up the coardination of data processing functions within the
telerobot.

The Data Management subsystem could suppart an even mere adeptive mode of
interaction among subsystems if the overall telerobotic control design allowed a top level
task synthesizer to pass information templates directly to subsystems, (A low level Data



Management subsystem service of pass information template to X, Y, and Z would be
used and available on a reflex baeis to a high level task synthesizer.). The subsystems,
in turn, would synthesize ther information needs based on what was requested of them
and would then pass ther information templates up to the Data Management subsystem.

The object oriented, peer-to-peer, intelligent interface envisioned as the Data
Management subsystem boundery discussed in this paper, has a built-in conceptual
adaptability to integrate the following two autonomous telerobotic data processing
requirements : to suppart what appears to be the top down fiow of data, i.e., the cognitive
and more offline type of activities of planning and reasoning; and, to support the bottom
up or reactive and more rea-time activities such as run-time control of physical
processes and processing of sensory information.

For example, some telerobotic operator controlled operations may require on demand a
large portion of the data management subsystem’s resources to hande real-time
interrupts and to process a large quantity of data, for example, integrating multi-sensor
data). For a given cost/performance profile a fixed or nonadaptive data management
subsystem design may be easily overloaded by real-time operations. Similerly, a static
design may be overwheimed by large amounts of planning and reasoning due to critical
and abrupt changes in task objectives.

INTELLIGENT AGENTS

From the point of view of a subsystem, what ere the bere minimum or necessary and
sufficient conditions to support the peer-to-peer intelligent interface concept? (n order to
answer this question, we introduce the concept of the Inteliigent Agent that, by our
definition, resides in each subsystem of an autonomous telerobot. The intelligent Agent
has potentially several roles within the context of of a subeystem. These roles may be
determined by an external knowledge source. in a paper by Sztipanovits, the Multigraph
Architecture (MA) is a four layer architecture for intelligent systems that provides
"knowledge-level® information for Autonomous Communication Objects (ACO) in its
Knowledge Base Layer!. For the purposes this paper we focus our concept of an
Intefligent Agent as a small compact information broker2 that is responsible for managing
the interface of its host subsystem with respect to the rest of the system. It has to insure
the correct use by its hoet subsystem of the intelligent interface.

All intelligent Agents in the system adhere 1o the same inteliigent interface in a far
manner. Each |A has the capability to actually pass or expart an object from its
subsystem to another one and have the intefligent Agent in the receiving subsystem
accept it upon demand, i.e. within a reasonable’ time frame. The capebility for an IA to
accept any object upon demand may be impractical. What is more practical and

'Sztipmwis,d., Execution Environment For inteligent Real-Time Control Systems, JPL Space
Telerobotics Workshop, January 20-22, 1987 fin publication).

2an anonymousty athored NASA SAIS document usesthe temm inteligent Agentasthe “eyesand ears”
inremote spece pleif orms that take commands and sends informaliontoa mastercontroleriocatedinthe
Speace Station orin alerger system. Allinsiruments and plelf orms are designedinsuchawayasto be able
to host aninteligent Agent.



addresses the intent of the conceptual design is that each |A can be unilaterally signaled
and required to, at the very minimum, take a "command * object.

The iast capebiiity that an Inteligent Agent must have in its role as interface manager is
the ability to reset(replace) another inteligent Agent. Equivelently, any Intelligent Agent
automaticalty accepts any “command™ object, and that “command” object may be
replace yourself with me”.

INTELLIGENT SYSTEMS MANAGER

Obviously some higher level management functions is required in order not to have
Intelligent Agents resetting one ancther in a hazerdous manner. The Intefigent Systems
Manager (ISM) is , by our definition, the designated Intedigent Agent that has the
authority to give and revoke all other IA's capability to reeet peers. Furthermore, it has
authority to give and take other resource privileges of 1As. It is now readly possible to
design such an organizational acheme to be logical secure through the use of object
capabilites . The actual design of incorporating these into a Data Management
subsystem still has to be done. What makes the designer's job much easier is that, if
properly used, capabilities can insure the logical soundness of an executive resource
controfler such as an IA/ISM in real time.

The proper use of object capabifities assumes that a logically sound theory and
specification of access and control between the ISM and |As has been developed. As a
simple example, only legal sequences of reset capebility are ever granted.. What are the
fules used by the ISM and conditions maintained by it among all the 1As 80 as to enforce
carectness? The development of a logically sound cooperation mechanism in which
only legal sequences are poesible and illegal ones created by external corruption of
data ere contained, is a major area of research in advanced dstributed processing. in
elementeary and not so cases mature theoretical results are available. Yhat
yet needs to be done is to investigate the technology and implementation aspects. An
autonomous telerobotic system hosting Intefligent Agents is an ideal testbed for
capability-based architecture design.

The interface manager function is only one of several for an IA/ISM in a telerobotic
system. [t happens to be a minimum and the cornerstone of the design concept. The
generic role for |A/ISMs is to serve as accretion points. These points are viewed being
within the Data Management subsystem and aliow for the insertion of more and more
“smarts” or intelligence in the whole design of an autonomous telerobot. Note, this is
specifically drected to information flow between subsystems. A telerobotic system wil
gein ‘smarts’ from advances in sensor and reasoning technologies. In addition, the
IA/ISM will allow a telerobotics system to get "smart” from integration of subsystems. The
IA is, itseff, a place to insert improved reasoning and learning technology. However, for
an initial implementation, only the interface manager portion may be done.

Later on, as experience is gained with this approach, more functionality and robustness
can be added. The result is that a sequence of |1As and ISMs may be built, each one
more advanced that its predecessor and serving more and more autohomous

ILampson, B.W,, Pau, M., and Siegest, H.J., Distributed Systems-Architecture and implementation, An
Adwnced Course, 1981, Springer-Yerlag, 202, 235-245.
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telerobots.. A demonstration goal of the intefligent interface could be that dfferent
generations of |As may coexist in rea-time in a system. Furthermare, insertion of a next
generation |A could be made in real-time without having to disable the telerobotic system
for any major length of time.

The Intefligent Systems Manager design concept is not meant to be an alternative 0 a
system-wide control architecture or control philosophy. Specifically, we see it providing
a conceptual bridge for mapping between the data processing resource space and the
overall functional space as described in a model such as the NASA/NBS NASREM
model ! and the target subeystems in a telerobotic system. This approach of introducing
another concept design model such as the IA/ISM is an attempt to bridge the concept
hierarchy problem discussed by Woll, et al2. The problem is what are the appropriate
levels in which to decompose a problem such as building an intelligent supervisory
control system. The four given are the functional, resource, knowledge and computer
architecture. Each of these may have ther own model.

The NASREM model gives an all inclusive functional system model for a telerobot. Itis a
six layer hierarchical model from top to bottom and has three horizontal pertitions for
sensary processing, world modeling and task decomposition. In our view, one of the
purposes of this model is to be the framework for developing a system effectiveness
criteria to be used to evaluate proposed designs. For a specific telerobotic system, this is
accomplished through iterations of tradeoff analysis of mission objectives (requirements)
and constraints. The logical distribution of functions in the NASREM model is to provide
a gauge for a particular design's effectiveness. On the other hand, the distribution of a
logical function in an implementation is subject to another effectiveness mode! that
incorporates constraints of the resource function.

For example, Hawker, et al, of Lehigh University, in a paper> on multiple robotic
manipulators, limited their interpretation of the NBS approach to dual arm control as
requiring a triad of controtiers. One confrofler for each arm and a third to control these
two. With the ISM design approach to data management, a design goal would be to
have the ISM dynamically hand off to two Intelligent Agents(assuming each arm is in a
different subsystem and hosts an |A) so that each one could drectly communicate in the
cooperation of the two arms without the 1SM in the loop. For example, ISM send to 1A
right arm a reset object Q and then tells IA left arm to accept from IA right arm an object
that will cause reset of itself.

The reason for al of this is that the dynamic control algorithm is likely to be considerably
different from single arm contral. Therefore, we have to replace both single arm 1Ag ( or
thoee portions critically related to rurn-time control) with a version of an IA that effectively
does the dual arm operations. The ISM has to fashion out of a higher order information
template ( calling for dual arm control), all the contextual information about the task.

1Seetootnote |

Z‘Hoie,m.l., Raney, StevenD., Distributed inteligence For SupervisoryConlrol, JPL Space
Telerobotics Workshop, Januery 20-22, 1987 (in publication).

3awker, Scolt J, Nagel, RN., Robers, Richerd, and Odrey, Nicholas G, Multiple Robatic Menipulators, Byte
Magezine, January 1986, 203-219.

11



Note, this most likely will not be doable with only dynamic swapping of to an alternate
program due to configuration and linkages overhead. The object Q may contain several
other objects in it that pertain to, for example, reak-time collision avoidance and other
high level world modei information condensed down to be appropriate at this level.
Consequently, the logical hierarchy of function of the NASREM model is preserved but
the real-time flow of information would go accarding to the criteria of a different model, a
system effectiveness data resource mode! for autonomous telerobots.

An even mare interesting problem than that of dual arm conrol is the change out of an
end effector by a robot. It is highly likely that the data management in the telerobot would
have to dynamically reconfigure itself to accommodate such changes. Consider, the
more exreme case, where a robot has to take itseif apart to fit through an aperture or
repar itself by swep out.. The run-time requirements on Data Management adaptability
will indeed be challenging.

Realizations of the flexible data processing example have not been tried for robotics yet
because of the lack of a suitable computer architecture and technology that support the
rea-time object-oriented processing described here for telerobots.. However, this is
rapidy changing and may already be attainable in some ways. Therefore, with respect
1o Hawker's conclusion, we feel that the NASREM mode is indeed relevant to dual arm
control, but that it should not be used as the final system effectiveness model for data
flow and processing in a telerobot.

Anyone developing a large scale telerobotic system may wish to partition the data
management subsystem in a one-to-one fashion according to the logical hierarchy in a
model such as the NASREM as a first cut to understanding functional and logical
relationships. But, as these are understood and clearly identified, another mode! that is
responsible for data management resources should be used to refine the design and the
ultimate realization of the Data Management subsystem.

For the reasons present above, we recommend that system engineers working in
telerobotics carefully look at how the models are used. Some of the debate of the
applicability of using a global framework such as the NASREM is due, in our opinion, to
Tying to use one model to solve a problem that actually needs four separate ones.

Curently, there is a need to develop a resource model for data management in the
context of autonomous telerobots. This model could then be used to gauge the
effectiveness of proposed designs for data management. The IA/ISM would be one of
them when it is sufficienty developed. For now, our criteria for effectiveness is limited to
nominal data management functionality, adaptability, and dependability.

SPACE BORNE SYMBOLIC PROCESSOR

At NASA Ames Research Center, the purpose of the Space BcrnedTSymboﬁc"I:rocem
profect is to advance the application of revolutionary computer architectures that
combine both numeric and symbolic processing for space and aeronautical flight.

Curently in the Al research community, a great deal of experimentation and prototyping

of architectures and technology is underway which is specifically aimed at improving the
performance of Al-based systems. For a recent survey, see the January 1987 issue of
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Computer. The goal of all this research within roughiy the next five yeers is to improve
the performance of symbolic processing applications by at least two to three orders of
magnitude.over what can be done today. One of the appiication areas to benefit from
this performance improvement is expert systems and expert system building tools.

Significant advances in computer technology and architecture are needed to support
the IA/ISM design concept. in space borne autonomous telerobots. This is true
particularly in large scale distributed environments where objects must persist for long
periods of time, span physically over dsjoint memories, and have reai-time interaction
with other subsystems composed of sensors, dynamic contral loops, human operators,
and planning databases.

Two critical requirements for supporting an Inteliigent Agent are the efficient
representation of objects and the high performance run-time suppart of object handing.
We see the dynamic research activity in the Al diacipline as being the moet promising
long term source of technology to support Intefigent Agents. Our two critical
requrements may be stated in the following manner: What software and hardwere
elements must exist in a subsystem in order to host an Intelligent Agent?

In software, the ability 1o represent object abstraction is required. This is greatly

In hardware, there must be an efficient architecture to support the movement and run-
tima hehavior of active obiects. Note, the implicit condition that this be supported
transparently in either a loosely or tightly coupled environment of multiple processars
This is a vast subject area and, since the sixties, has often been referred to as the
semantic gap between the software and hardware. Reseerch is underway wherein new
hardware units are being proposed and fried out to suppart more drectly the movement
of variably structured objects in a distributed environment.

Another crucial hardware element is the specific ability of one subsystem to fork an
object into another subsystem. We see rudmentary paraileis to this in some
programmabie interfaces in today's microprocessor-based controllers and in large
mamirame computer systems. The IBM 370 series mainframe softwere would assemble
a channel program, send it down the I/O channel to the channel controlier, and then
hand over control to the controfler by a command sequence that said: “execute this

program”.

The details of realizing this crucial capability of object forking may be implemented in a
veriety of ways. In terms of a telerobotic system, for example, do we design and build a
special hardware backplane that runs through all the subsystems, or glue together
existing hardware components, or use a local erea network? The moet relevant
approach to the specifics of doing this is to include this as a systems engineering
requrement for subsystems in an autonomous telerobot. Only in the context of a specific
set of telerobotic missions requirements can such trade-offs be usefully done. One
caggdate is the technology being proposed for a Space Barne Symbolic Processar,
(SSP).

integral to the ability to fork an object onto another subsystem is the hardware that aflows
the resetting of that part of a subsystem.(internal to the intelligent Agent) that is running a
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forked object. As an example, a mainframe would be able 1o unilaterally reset a
controller regardess of what it is doing.

The induced run-time design requirement to support |As is nontrivial. A sophisticated
trigger mechanism that uses a dynamically priortizable vectored interrupt scheme is one
possibility. Work is being proposed for designing and building off-the-shelt hardware
components to support the triggering mechanism needed at the hardware level to
support the Blackboard model. Simply put, the model is ah Al paradigm of individuals
communicating by free association by writing on a blackboard their knowledge of a
problem(or task) and reading from it as they piease. At the nitty gritty hardwere level,
requirements are much more constrained and strict if serious reak-time appiications are
1o be supported. The following figure is one illustration of an architecture of a blackboerd

at the subeystem/component level.

Block Diagram of Black Board Model
Figwre 3

The herdware rigger mechanism for reak-time black boards may be used in a design to
suppart the Intelligent Agents embedded in a telerobot within the next five years.
However, without such devices available it is a crucial tradeoff, depending on certain
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telerobotic constraints, whether to even design the Data Management subsystem as
hoeting an Intelligent Agent. There is a compromise case that the Data Management can
afford one and another subsystem cannot. In this instance, this subsystem could
multiplex its access to the Data Management subsystem through a shared A hosted on
another subsystem to remain true to the design concept and meet cost constraints.

The curent reseerch thrust in architectures and technology for Al applications questions
the very basic tenets of computer system design. For example, the boundary between
what is software and hardware and the usual conventions of layering an architecture are
being re-explored. The following figure is an example of logical layers (or levels) that
are used to organize and understand various functions in an computer design.

_ Scripts

Apphcations Databases
Languages

Utliities

. User Shell
Operating System | User Processes
Services Files & Directories
Secondary Memory
Communications
SystemKemel Yirtual Memory

iPC Kemel Tasking & Scheduling
Macros

Instruction Set

Fimware
Hardware YLSI

Computer Architecture Hierarchy Model
Figure 4

Note that we use this hierarchy only as a model and not as a representation of the
design of an architecture . The use of a hierarchy is a powerful and commonly used tool
10 aid in the understanding of a design. For a particular system design, the layering wil
be unique to that design.
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It is this variability in layer definition that makes evaiuating and understanding the impact
of innovations in Al architecture and technology difficult to gauge. The only recourse.in
many cases, is to actually build prototypes and run experiments. In confrast, the
hierarchical layering in numerically oriented architectures is relatively more stable.
increments in performance and functionality are easier to gauge when adding a function
in a particuler layer or by speeding an existing one up.

A major shortcoming of this model is that the structure or micoarchitecture of the
execution environment is not obvious. The reason for this is that the execution
environment in conventional designs depends on functions at several different layers.
Consequently, the structure or microarchitecture of the execution environment is not
optimal either in performance or in representation (programming) of reak-time object
handing.

A major reason for the reiatively low performance levels of today's symbolic processars
is that they are based on an incremental design approach of hosting Al software on
conventional, numerical processing oriented architectures which in tum often suffer from
a weak run-time microarchitecture.

An example of what we call a microarchitecture model of the run-time environment is
given by Sztipanovits of Vanderbilt University in the following figure. He calls it the
structure of the execution environment.

Tools

ACO Shed

Fortran

Lisp
4P (Franz Lisp, Common Lisp)

: v
e Mutigraph Kemel
]

Opersting System
(YMSIDECNET, CSOS; MS-DOS)

Structure of the Execution Environment{ Sztipanovits)
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The focus of his research is to use the Muitigraph Architecture(MA) to study intedligent
systems operating in a rea--time, parallei computing environment.. Since, itis a
requirement to host this wark on a variety of computers he has to include a number of
interfaces for facilitating portability and flexibility. We view the following as primarily
interfaces of the Multigraph Kerne}(MK) being there for these roles: Fortran, C and the
Operating System interface.

Let us consider what would happen to the components of this model if we were trying to
design a “lean and mean" run-time environment . One step toward this goal wouid be to
minimize the interfaces that the (MK) has. It is interesting to note that many applications
using objects and symbolic processing are in runtime environments that are as
complicated as this one. This is one example of why existing object based applications
do not perform favorably with ther numerical counterparts.

Our prefiminary design of a very compact microarchitecture for the (MA) is given below.

Tools
ACO Shed
Fortran | C Lisp |
Multigraph Kemsel
Opersling System

Example of Compact Execution Ervironment
Figre 6

17



The interfaces are fewer and simplified. The upper interface of the kernel supports all of
the languages equally. The operating system(run-time aspects) is pushed up to where
the kemel is. A single object criented run-time resource manager is pert of the kernei.
By design, the kernel and hardware interface may be greatly simpiified. The (ACO) sheil
may have direct support in the kernel. This is an optional design tradeoff and

on how important it is to "hardwire™ knowledge base facts directly into the kernel.

The last major architectural issue that remains is how to efficiently mix and match the
parallel execution of programs using numeric and symbolic data.” The problem is that
procedural languages such as C and Fortran and functional languages such as Lisp
have some major differences in terms of efficient, high performance data representation

and processing.

The SPUR(Symbolic Processing Using RISCs) is a multiprocessor design that does

Processor Processor
sea Sl012a0ce
Cache Cache
< SPUR bus ' >
shared %)
- memory Device
Block Diagram of Berkeley SPUR

Figre 7

The design consists of identical processor modules/boards each of which support both
symbolic and numeric operations. This commonality is achieved on the boerd by having
special purpose procesaors that process floating point, and list(symbolic) deta
separately. An elaborate onboard caching scheme is used to move data to and from the
coprocessors and the global memory and to identify the data as to whether what type it
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is. Up 1o 12 processars, a global virtual memory of 256G-bytes , and 1/O devices are all
connected together by a common bus. The SPURbus is 64 bits wide is based on a
modified Texas Instruments NuBus.

Research for the SSP will undoubtably look hard at the features of this design. The
radeoifs of whether 10 use a bus or netwark and whether to hid special purpose
processors in a module that connects to the bus or netwark or to hang them drectly off
the connection media will be a interesting computer engineering trade. One design
tradectf used in the SPUR that is relevant to the flight environment is the size of the
onboerd caches. In a flight environment, the requirement to power a wide backplane is
up against a major power constraint. Since the SPUR is designed to used as a low cost
workstation the SPURbus is siow when compared to similer designs using
multiprocessors that are aimed at replacing large uniprocessors. The solution was to
put in relatively large caches for both instruction and data.

There is one interesting requirement that the designers of the SSP should consider that
does not seem 1o be possible with the SPUR. The development of computer chips and
modules that support higher level abetraction above just tagging data is important.
Hardware support for Black board functions may soon become a reality. In the future,
special purpose hardware for such things as Inteligent Agents and cooperating expert
systems may be desirable to support at the computer component and architecture level.

As a consequence, the scope of the SSP in terms of supporting Al technology in flight
has the impartant role of being a pathfinder in how such deveiopments could be
configured into a fiight system. At one end, we have a stand alone Lisp processor in
space running an embedded expert system, and at the other, we have the possibility of
multiple blackboards whose knowledge sources are able to share information across
disjoint domains.
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